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Summary

In this paper we test whether or not structural and morphological features inherited
from the Eurasian continental margin are affecting the contemporary stress and strain
fields in south-central Taiwan. Principal stress directions (o1, 02, and 03) are estimated
from the inversion of clustered earthquake focal mechanisms and the direction of
maximum compressive horizontal stress (Su) is calculated throughout the study area.
From these data the most likely fault plane orientations and their kinematics are
inferred. The results of the stress inversion are then discussed together with the
directions of displacement, compressional strain rate, and maximum shear strain rate
derived from GPS data. These data show that there is a marked contrast in the direction
of Sy from north to south across the study area, with the direction of Sy remaining
roughly sub-parallel to the relative plate motion vector in the north, whereas in the

south it rotates nearly 45° counterclockwise. The direction of horizontal maximum

compression strain rate (€x) and associated maximum shear planes, together with the

displacement field display an overall similar pattern between them, although

undergoing a less marked rotation. We interpret the southward change in the Sy, €g,

and the dextral maximum shear planes directions, together with that of the horizontal
displacement field to be related to the reactivation of east-northeast striking faults
inherited from the rifted Eurasian margin and to the shelf/slope break. Inherited faults
in the basement are typically reactivated as strike-slip faults, whereas newly formed
faults in the fold-and-thrust belt are commonly thrusts or oblique thrusts. Eastward, the
stress inversions and strain data show that the western flank of the Central Range is
undergoing extension in the upper crust. Sy in the Central Range is roughly parallel to

the relative plate convergence vector, but in southwestern Taiwan it undergoes a
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marked counterclockwise rotation westward across the Chaochou fault. Farther north,
however, there is no significant change across the Lishan fault. This north to south
difference is likely due to different margin structures, although local topographic effects

may also play a role.

Keywords: Principal stress, strain rate, Taiwan, fold-and-thrust belt, reactivation of

inherited structures.

Issue Section: Geodynamics and tectonics

1 Introduction

The determination of the stress and strain fields in a fold-and-thrust belt is important
because these are necessary parameters for the understanding of its mechanic,
geometric, and kinematic evolution (e.g. Angelier et al. 1986, Oncken 1988, Erslev 1993,
Becker 2000, Homberg et al. 2002, Saintot & Angelier, 2002, Lacombe et al. 2006, King
et al. 2009, Peyret et al. 2011, Tavani et al. 2015). For example, based on studies in both
active and fossil fold-and-thrust belts, Tavani et al. (2015) concluded that, although the
stress and strain fields can be locally complex, even during syn-thrusting a strike-slip
stress field is the most common. While they suggest that this conclusion is perhaps
somewhat counterintuitive, they interpret it to result from the reactivation of inherited
structures. Célérier (2008) proposed that the reactivation of faults with near optimal
orientations (e.g. Sibson 1990, 1994, Kelly et al. 1999, Leclere & Fabbri 2013) controls
the state of stress in the crust. Knowledge of the stress and strain fields can, therefore,
play an important part in a data set aimed at deciphering the role of reactivation of

inherited structures in the development of a fold-and-thrust belt.
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With this in mind, in this paper we continue to explore the possible effects that the
morphology and inherited structures of the Eurasian continental margin are having on
the fold-and-thrust belt in south-central Taiwan (Fig. 1) which we have investigated in a
series of recent publications (Brown et al. 2012, 2017, Camanni et al. 2014, 2016,
Alvarez-Marron et al. 2014, Biete et al. 2018). In these studies, we used seismicity data,
P-wave velocity models, and geodetic data, together with geometric analyses of surface
and subsurface geological structures to propose that there is a causal link between
along-strike changes in these features and the reactivation of fault systems inherited
from the margin’s outer shelf and necking zone. Here, we investigate this proposal
further by estimating the principal stress directions (o1, 02, and 03) using inversion of
clustered earthquake focal mechanisms and calculating the direction of maximum
compressive horizontal stress (Su) throughout the fold-and-thrust belt in the study area.
From these data we then determine the fault planes that are likely to have been
activated at depth. We discuss the combined results of the stress inversions with the
directions of displacement, and the compressional, rotational, and maximum shear
strain rates derived from GPS data. The hypothesis to be tested is whether or not the
previously proposed causal link between the inherited features of the margin and the
structure of the fold-and-thrust belt is supported by the contemporary stress and strain

fields in south-central Taiwan.
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2 Geological setting

2.1 Eurasian continental margin

The continental margin of Eurasia that is involved in the Taiwan fold-and-thrust belt
evolved from a sub-continental subduction system in the Late Cretaceous (Li et al. 2007,
Lan et al. 2008) to a rifting margin by the Early Eocene, with sea-floor spreading
starting in the South China Sea by the late Early Oligocene (e.g. Briais et al. 1993).
Beginning in the Early Miocene several extensional events further affected the outer
margin (e.g. A. T. Lin et al. 2003). Throughout this paper, we follow the scheme of
Alvarez-Marron et al. (2014) and Brown et al. (2017), when describing the geology of
the continental margin, defining the pre-Eocene rift-related rocks as its basement, the
area of basement thinning towards the South China Sea ocean basin as the necking zone
(see Mohn et al. (2012) for a definition of necking zone), and the slope as the
morphological feature where the sediments were deposited on the necking zone.

Today’s shelf/slope break is defined as the 200 m bathymetry contour (Fig. 1).

During the Eocene rifting, several roughly northeast trending basins (e.g. Taishi and the
Nanjihtao basins) developed and were filled with up to 5 km of sediment (S. K. Hsu et al.
2001, A. T. Lin & Watts 2002, A. T. Lin et al. 2008, C. Y. Huang et al. 2012, Yeh et al.
2012) (Fig. 1). The Taihsi Basin is thought to extend eastward into the Taiwan mountain
belt where it is now exposed in the Hsuehshan Range (Fig. 1) (L. S. Teng, 1992, L. S.
Teng & Lin 2004). The Miocene extension resulted in the formation of a number of east-
northeast striking extensional faults (B, Yichu, etc. Fig. 1) and the formation of the
Tainan Basin on the necking zone of the margin (e.g. Yang et al. 1991, A. T. Lin & Watts

2002, A. T. Lin et al. 2003, Ding et al. 2008). From north to south, the area of transition
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from the shelf to the necking zone is commonly called the Peikang High (Fig. 1). The
Tainan Basin and the faults associated with it extend from the offshore southwestern
Taiwan on land through the undeformed foreland and into the fold-and-trust belt (Fig.
1) (e.g. A. T. Lin et al. 2003, Rodriguez-Roa & Wiltschko 2010, Alvarez-Marron et al.
2014, Yang et al. 2016, Brown et al. 2017). Recently, Yeh et al. (2012), McIntosh et al.
(2014) and Lester et al. (2014) identified what they interpreted to be a failed rift
located at the base of the slope. Reflection seismic data show that it extends
northeastward along the base of the slope (McIntosh et al., 2014) and possibly into the
southwestern part of the island (Brown et al., 2017; Biete et al., 2018). This failed rift
marks the onset of the hyper-extended part of the margin, which extends for more than
200 km to the south (Lester et al., 2014). It is the reactivation of these Eocene and
Miocene extensional faults that we have previously proposed to be having an important
effect on the geometrical development of the fold-and-thrust belt, its seismicity and its
topography (Brown et al. 2012, 2017, Camanni et al. 2014, 2016, Alvarez-Marron et al.

2014, Biete et al. 2018).

2.2 South-central Taiwan fold-and-thrust belt

Within the Taiwan mountain belt (Fig. 1), the study area is divided into several roughly
N-S striking tectono-stratigraphic units (e.g. Ho, 1988) that, from west to east are: the
Coastal Plain (CP), the Western Foothills (WF), the Hsuehshan Range (HR) and the
Central Range (CR). The Coastal Range (CoR) is outside the study area and will not be
mentioned further. For the sake of simplicity, in this study we group the Coastal Plain,
Western Foothills, and Hsuehshan Ranges under the term fold-and-thrust belt, which is

juxtaposed against the Central Range along the Lishan-Chaochou fault system (Fig. 2).
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While we have only limited structural data for the Central Range, we include its western
flank in this study because of the important changes in the stress and strain fields that
occur from west to east across the Lishan-Chaochou fault system (see sections 3 and 4

below).

In this paper, we follow the structural interpretations of the fold-and-thrust belt that
have been proposed by Brown et al., (2012, 2017), Alvarez-Marron et al., (2014), and
Biete et al., (2018). Within the study area, the fold-and-thrust belt has a roughly N-S
structural grain that becomes more NE-SW in the southwestern part (Fig. 2). It is a
west-verging imbricate thrust system developed above a basal thrust that dips overall
eastward from its tip line along the Changhua thrust in the west to a maximum depth of
about 7 km before ramping down into the basement (Brown et al, 2012; Alvarez-
Marron et al.,, 2014; Biete et al,, 2018). A number of pronounced ENE-striking lateral
and oblique ramps have been interpreted to occur along the basal thrust over its north-
south extent. This interpretation is based on along-strike changes in structure,
seismicity, topography, and P-wave velocity (e.g.,, Brown et al., 2017). Alvarez-Marron et
al. (2014), Brown et al. (2017), and Biete et al. (2018) have proposed that these along-
strike changes have a causal relationship with the extensional faults inherited from the
continental margin. Along its eastern flank, the fold-and-thrust belt is juxtaposed
against the Central Range along the oblique thrust to sinistral strike-slip Chaochou-
Lishan fault system that extends along the entire length of the mountain belt and has
been interpreted to penetrate into the middle and even lower crust (Wiltschko et al.
2010, Tang et al. 2011, C. Huang & Byrne 2014, Kuo-Chen et al. 2015) (Figs. 1 and 2). A

geological description of the Central Range is out of the scope of this paper.
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In the study area, much of the seismicity is located below the basal thrust of the fold-
and-thrust belt, in the basement (e.g. Wang et al,, 2000, Carena et al. 2002, Yue et al,,
2005, Camanni et al. 2016, Brown et al. 2017), so knowing the depth to the top of the
basement is important to our study (see Section 2.1. for our definition of basement). The
exact depth to the top of the basement is not well known since it does not crop out in
the study area and it has been intersected only in several boreholes in the Coastal Plain
(e.g. Chiu 1975, Jahn et al. 1992, Shaw 1996). Therefore, we use a petrophyscial proxy to
define its location. The rationale for this has been presented by Camanni et al. (2016)
and Brown et al. (2017) and the reader is referred there for extensive discussions of it.
We use a P-wave velocity of 5.2 km/s to describe the top of the basement (or, to view it
another way, the base of the clastic sediments, whose maximum P-wave velocity is
about 5.2 km/s (Brocher, 2005)). Using this velocity description, the basement/cover
interface is between 5 km and 8 km depth throughout much of the study area, except
beneath the Hsuehshan Range and along the eastern part of the fold-and-thrust belt
between 23°N and 24°N (Fig. 3). East of the Chaochou-Lishan fault system the basement
rocks approach the surface, and in fact crop out extensively in the Central Range, east of

our study area.

3 Contemporaneous stress field in south-central Taiwan

3.1 Methodology
In this study we use earthquake focal mechanisms to estimate the contemporaneous
stress field in south-central Taiwan. The earthquakes were recorded between 1994

through 2014 and all hypocenters have been relocated by the double-difference
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technique (Waldhauser & Ellsworth 2000) using the HypoDD3D software (Waldhauser
2001) within the 3D P-wave velocity model of Kuo-Chen et al. (2012). The average
horizontal uncertainties in earthquake locations are estimated to be +£1 km, while the
vertical is £2 km (Brown et al. 2017). In this study we have used all events over the time
period given, regardless of transitory stress changes caused by large events like the
1999 Chi-Chi earthquake. It is well known that large earthquakes can cause transitory
changes in the stress field (e.g. Michael 1987, Hardebeck & Hauksson 2001, Y.-M. Wu et
al. 2010, Hensch et al. 2016, Hardebeck & Okada 2018), but it is not well understood
how long such a stress change can last (Hardebeck & Okada 2018). For example, while
there was a marked change in the stress field in parts of Taiwan following the 1999 Mw
7.6 Chi-Chi, this change was spatially heterogeneous and took several months to more
than a year to return to what it was prior to the earthquake (Y.-M. Wu et al. 2010, Y. J.
Hsu et al. 2011). Removing earthquake data during a period of time after the Chi-Chi
event in order to take into account its effect on the contemporaneous stress field would,
therefore, not be necessarily correct since the changes recorded and the time it took to
return to what it was before are spatially heterogeneous. Furthermore, there have been
a number of other large earthquakes in the study area, such as the 1998 My, 6.2 Rueyli,
the 1999 M,, 6.4 Chiayi, and the 2010 My, 6.4 Jiashian events, whose spatial and temporal
effect on the contemporaneous stress field in western Taiwan have not been studied.
Therefore, selectively removing a time period of data related to the large earthquakes

would bias the data set in areas unaffected by them.

In this study we use a hypothesis driven approach (e.g., Hardebeck & Michael, 2004) to

do the binning of the focal mechanism data for the stress inversion. It is designed to test
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whether or not the pre-existing structure of the margin is influencing the
contemporaneous stress field. Since much of the seismicity of the study area occurs
within the basement (Fig. 4) we have divided the crust into three depth levels. From 0 to
6.9 km comprises the fold-and-thrust belt and/or the sedimentary carapace overlying
the basement. Some 37% of earthquakes occur within this depth level (Fig. 4). From 7 to
45 km comprises basement, which is divided into two depth levels. From 7 to 14.9 km
contains 47% of earthquakes and its base is chosen to coincide with the depth to the
expected thermal cut-off for seismicity (about 350 + 100 °C; Sibson (1983), W. Chen &
Molnar (1983)) given a geothermal gradient of around 30°C/km in western Taiwan (S.
K. Wu et al. 2013). Finally, we include a layer from 15 to 45 km depth that includes the

deepest earthquakes, which accounts for 16% of the total seismicity.

The focal mechanism data set comprises 2465 events with magnitudes ranging from 1.4
to 6.8, with a mean My, of 3.(Fig. 5a) and where the 90% of the events magnitudes range
between 2.5 and 4.8 (see supplementary data set table SD1). Focal mechanisms were
calculated using first motion polarities of P waves (Y.-M. Wu et al. 2008). Each focal
mechanism was assigned a quality index factor (Qfp) to assess the uncertainty and
solution quality depending on the number of polarity readings (Npor), the azimuthal
gap (Gap), a relative number of up versus down polarity readings (Rup), and the data fit
from the genetic focal mechanisms estimation algorithm (for details on Qfp calculations
see Y.-M. Wu et al, (2008)). Values for Qfp, Npor, Gap and Rup can be found in
supplementary Table SD1. The data set is composed of focal mechanisms solutions with
Npor > 10 and Gap < 180° and, generally, a solution is considered to be unconstrained if

Qfp = 0, and good with Qfp > 1 (Y.-M. Wu et al,, 2008). All event locations and focal
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mechanism solutions, which include strike, dip, rake with standard deviations (10), and

the corresponding P, T, and B axes are also presented in supplementary Table SD1.

The data set has been divided into clusters (Fig. 5) where the proximity of events and
their distribution in swarms (i.e., main shock and aftershocks) were taken into account.
Each cluster has a minimum of 20 events (except cluster A4 with 17 events), which has
been shown to be a sufficient number to give a stable inversion result (e.g. Hardebeck &
Hauksson, 2001; Townend & Zoback, 2006; Arnold & Townend, 2007; Vavrycuk, 2014)
and 29 of the clusters have more than 30 events. In keeping with Y.-M. Wu et al. (2008,
2010) and S.K. Chen et al. (2017), we use only events with a Qfp > 0.1. Overall, the
clusters have an average of Qfp 1.15 + 0.46 (average of the median cluster Qfp), with
only an 11% * 6 in average of percentage of events with Qfp < 0.2 in each cluster
(supplementary Table SD2). Nineteen clusters have a median Qfp > 1, which we
consider being high quality clusters. Eleven clusters have a median Qfp between 0.7 and
1, which is fair, and 6 have median Qfp below 0.7, which is acceptable (Y.-M. Wu et al.
2008) (supplementary Table SD2 contains more information on cluster Qfp statistics).

In the stress inversion all events are treated equally, with no weighting being applied.

The focal mechanism data in the various clusters are displayed in supplementary Figure
SD1. We show nodal plane normals, P- and T-axes and the faulting states, and see that
most clusters have rather well-defined directions of P-, T- axes and nodal plane normals,
while some (A7, B11, B17 or C3) show more scattered directions. The P- and T- axes
distributions suggest that events in some clusters are produced by a thrust state of
stress (T-axes roughly vertical, 90° away from P) (B8, B9, B10, B16 and C4), some by a
strike-slip environment (90° along the horizontal between P and T axes) (A8, A9, B1 and

B5), and a few by a normal state of stress (P-axes roughly vertical, 90° away from T)
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(A11, A13 and B13). Other clusters seem to be located in more oblique stress states of
either transtenstion or transpression, where some P- and T- axes show thrust or normal
and others strike-slip (A3, A11, A12, B4 and B6) (column A of supplementary Figure
SD1). However, as individual focal mechanisms can vary significantly even when events
are produced by the same stress state (e.g. McKenzie, 1969) we need a formalized

inversion methodology to assess the causative stresses in the clusters.

To estimate the principal stress directions (o1, 02, and 03) we use the stress tensor
inversion scheme of Lund & Slunga (1999). The methodology accounts for uncertainties
in the focal mechanisms by perturbations to the P-, T- and B-axes up to some angle
during the inversion (Lund & Slunga, 1999; Hensch et al., 2016). Here we allowed 10 -
15 degrees maximum perturbation in keeping with the 18 degree average focal
mechanism uncertainty estimated by Wu et al. (2008). In order to select which of the
two nodal planes is the most likely fault plane, the Lund & Slunga (1999) methodology
applies a Mohr-Coulomb stability criterion to assess which nodal plane is more unstable
over a range of coefficient of friction (u) values. Here we use a u-range of 0.4 - 1.2 and if
one nodal plane is consistently more unstable over this range, that nodal plane is chosen
as the fault plane and used in the inversion. If, on the other hand, the most unstable
nodal plane changes over this range then the nodal planes are similarly stable and
choosing one over the other would mean an implicit choice of u. The fault plane is then
instead chosen based on the goodness of fit. Using the focal mechanisms of the
considered cluster, the inversion performs a grid search of the principal stress
directions and the stress ratio R=(01 - 02)/(ol - 03). For each point on the grid it
searches through all perturbations of the focal mechanisms and for each calculates the

angular misfit between the shear stress direction on the chosen fault plane and the
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observed slip direction. This process determines the directions of the three principal
stress axes and an estimate of the relative size of the intermediate principal stress, the
stress ratio R (Lund & Slunga 1999). When the entire set of focal mechanisms of the
cluster has been searched at all stress directions, the optimal stress tensors and its
confidence limits are calculated using statistics for one-norm misfit (Fig. 6 column A).
The direction of the maximum compressive horizontal stress (Su) and its confidence
limits are then determined using the methodology of Lund & Townend (2007). The Su
results are plotted as a histogram around the stereonet (Fig. 6 column A). In map view,
Sh is plotted as wedges that represent the 95% confidence limit (Fig. 7) and the stress
regime of each (i.e, reverse, normal, strike-slip) is determined from the stress tensor.
Then, the poles to the estimated fault planes, determined from the two nodal planes of
each focal mechanism (e.g. Lund & Slunga 1999) are plotted and contoured using the
Kamb method (Fig. 6 column B). We also plot the strikes of the estimated fault planes in
a rose diagram (Fig. 6 column C) using the Stereonet3D software of Allmendinger et al.
(2012). The length of the petals corresponds to the percentage of the total number of
strikes that falls within a 10° bin, and the two most frequent strikes are chosen as the
primary (most frequent) and secondary fault planes (Fig. 7). Finally, to assess how the
instability fault selection criterion performed we note that on average 70% * 12% of the
fault planes were chosen based on stability and that in only three clusters (A4, B14 and
B16) were less than 50% of the planes chosen by stability (supplementary Table SD2).
In supplementary Figure SD1 we illustrate the chosen fault planes in Mohr-Coulomb
diagrams, with the relative stress magnitudes calculated in the inversion using an
average coefficient of friction (u) of 0.6 (supplementary Figure SD1 column G). A
complete set of inputs and outputs for each cluster is given in Supplementary data set

Figure SD1.
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3.2 Stress tensors and maximum horizontal compressive stress

An analysis of faulting types (calculated using the method of Zoback (1992)) shows that
strike-slip and thrust faulting dominate in the fold-and-thrust belt (Fig. 5A). Strike-slip
faulting occurs mostly in the Coastal Plain and in the Western Foothills at about 23.5°N
to a depth of 15 km, whereas thrusting and transpressional faulting dominate in the
Western Foothills and the Hsuehshan Range from the surface to the base of the
seismicity (Fig. 5B, C and D). Extensional faulting in the northwest (clusters A4 and B4)
and strike-slip faulting in the southeast (cluster A9) are related to the Chi-Chi
earthquake sequence. Extensional and strike-slip faulting dominate at all depths along
the western flank of the Central Range, with thrusting being common at the deepest

level in the south (Figs. 5B, C and D).

Throughout the fold-and-thrust belt, o1 at all depth levels generally plunges gently
toward the west-northwest to west (Fig. 6 column A). There are local exceptions to this,
such as clusters B1, B2 and C1 in which o1 plunges gently east-northeast. From 0 to 7
km depth, the state of stress in the Coastal Plain, Western Foothills, and the Hsuehshan
Range is predominantly in the strike-slip regime. In the southern part of the Western
Foothills, from 7 to 15 km depth, there is a dominantly compressional stress regime that
is important. Although there are few data in the 15 to 45 km depth level, these show a
compressional stress regime in the north and a strike-slip regime in the central and
southern parts of the study area. An extensional stress regime is rare in the fold-and-
thrust belt, being found only in clusters A4 and B4, where o3 plunges gently toward the

east-southeast. An extensional stress regime is common, however, in the upper 15 kms

Page 14 of 82



Page 15 of 82

oNOYTULT D WN =

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

Geophysical Journal International

of the Central Range, where o3 is gently northeast and southwest plunging (clusters
Al11, A12, A13, B13, and B14). At the deepest level, in the southern part of the Central
Range, a compressional stress regime dominates, with o1 plunging gently toward the

west (cluster C5).

Throughout the fold-and-thrust belt, the direction of the maximum compressive
horizontal stress (Su) varies appreciably from north to south, although it shows only
minor, local variation with depth (Fig. 7). In general, the direction of Sy fans from
roughly northwest in the north (clusters A4 and B4 are exceptions), through to west-
southwest in the southwest part of the study area. The direction of Sy in the Central
Range is constantly northwest oriented, except at the deepest depth level in the south,

where it is west-southwest oriented.

3.3 Most likely active fault planes

A derivative of the process of determining the stress tensor is the possibility to estimate
the most likely fault plane orientations and kinematics for the region of each earthquake
cluster (Figs. 8). We have done this using the fault selection during inversion
methodology outlined above and orientations are given following the right hand rule.
The quality of the fault plane determinations can be observed from the deviation angles
(Dev in Fig. 6) (defined as the mean of the angular differences in the fault planes
between the observed slip directions and the directions of calculated maximum shear
stress) given for each cluster. As an estimate of quality, we divide the results into 3
classes based on the estimated average uncertainties in the focal mechanisms (Y.-M. Wu

et al,, 2008): <10° is good (26 clusters), 10° to 15° is fair (8 clusters), and > 15° is poor
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(2 clusters) (Lund and Slunga, 1999). From 0 to 7 km depth (Fig. 8A), northwest to
north-northeast striking sinistral transpressional faulting to thrust faulting dominate in
the southern part of the Western Foothills, whereas nearly east striking dextral strike-
slip faulting and northwest striking dextral transtensional faulting occurs in the north.
Roughly northwest striking sinistral transpressional faulting dominates in the
Hsuehshan Range, whereas northwest striking extensional to sinistral transtensional
faulting are typical in the Central Range. From 7 to 15 km depth (Fig. 8B), north-
northwest and north-northeast striking dextral and sinistral stike-slip faulting are
common in the south of the Coastal Plain. Faulting in the southern part of the Western
Foothills is characterized by north-northwest and north-northeast striking dextral and
sinistral transpressional faulting together with north-northeast and north striking
thrust faulting, whereas in the north only northwest striking transtensional faulting
takes place. The central part of the Western Foothills is dominated by a zone of east-
northeast striking, dextral strike-slip faulting (Fig. 8B). At this depth level, the
Hsuehshan Range is characterized by northwest through northeast striking sinistral and
dextral transpressional and thrust faulting. The southern part of the Central Range has
roughly north striking extensional faulting with predominantly roughly east-west
sinistral transpressional faulting in the immediate hangingwall of the Chaochou fault.
From 15 to 45 km depth (Fig. 8C), southwest and nearly east striking dextral
transpressional faulting is taking place in the Western Foothills, whereas in the far
southeast north striking dextral faulting is taking place in the immediate footwall to the
Chaochou fault. At this depth level, in the Central Range north-northeast striking thrust
faulting is taking place along the hangingwall of the Lishan fault, and roughly east-west

sinistral strike-slip faulting in the immediate hangingwall of the Chaochou fault.
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4 Displacement and strain rate analysis from GPS data

4.1 Data and methodology

In this section we investigate the deformation and strain rates of the south-central
Taiwan fold-and-thrust belt and the western flank of the Central Range using data from
the Taiwan GPS network. The station coverage of the network is dense in most of the
study area (Fig. 9A), with the exception of the high mountainous areas of the Central
Range, the east-central part of the Western Foothills, and the southern part of the
Hsuehshan Range. The data set used here is from the period 2005 through 2009 and
was processed according to the method of Yu et al,, (1997), and the reader is referred
there for details. Horizontal velocities are calculated relative to station SO1R located on
the island of Penghu, in the Taiwan Strait on stable Eurasia. Strain rates are calculated
from the GPS data using the SSPX software of Cardozo & Allmendinger (2009), and the
reader is referred there for the background theory. We used a 5 km by 5 km grid and a
grid-nearest neighbour interpolation method using the 10 nearest stations within a
maximum radius of 35 km. SSPX determines the best fitting strain tensors for each 2D
surface of the grid and its corresponding strain ellipse. In Figure 9, we show the
displacement vectors, the rotation rate about a vertical axis, the dilatation strain rate,

and the maximum shear strain rate, as well as the horizontal maximum compressive
and extension strain axes (€u) and the maximum shear strain planes. For the sake of

clarity in Figure 9, only every second set of horizontal maximum compressive and
extension axes are plotted. Below we describe the data set using the kinematic analysis

of a body of rock that undergoes translation, rotation, dilation and shear.
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4.2 Displacement vectors and strain rates of south-central Taiwan

The horizontal velocity vectors display an overall northwest to west-northwest sense of
displacement in the northern part of the study area, changing to dominantly west
directed in the central and much of the southern areas (Fig. 9A). In the southwest, along
the coast, the velocity vectors are more southwest directed. Horizontal displacement
along the northwestern part of the Western Foothills and throughout the Coastal Plain
is very small, whereas in the rest of the study area the horizontal velocities increase

overall toward the south and east.

The sense of vertical rotation undergoes several changes from north to south (Fig. 9B),
with a clockwise rotation dominating in the Hsuehshan Range and the northern part of
the Central Range, whereas counter clockwise rotation is more common in the northern
part of the Western Foothills and the Coastal Plain. From about 23.5° N to 22.8° N there
is a pronounced zone of clockwise rotation that ends abruptly southward, where a
counter clockwise rotation dominates in the extreme southwest. The dilatation strain
rate pattern shows a clear change from west to east across the Chaochou- Lishan fault
system, with negative values (compression) everywhere in the fold-and-thrust belt and
positive values (extension) in the Central Range (Fig. 9C). Note, however, that the small
number of stations in the Central Range means that there is a large uncertainty
associated with this area. There is a marked decrease in the dilation strain rate in the

northwestern part of the Western Foothills and the northern part of the Coastal Plain.

The direction of €u is oriented roughly northwestward in the northern and

northeastern part of the fold-and-thrust belt, rotating to west-northwest in the central

and southern part. In the Central Range, the orientation of the extension axes is roughly
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northeast in the northern part, becoming more westward to west-southwest in the
south. The maximum shear strain rate is fairly uniform throughout much of the study
area (Fig. 9D). The Western Foothills show slightly higher shear strain rate than the
surrounding areas, and there is a slight southward increase. There is a local, east-
northeast striking, zone of high shear strain rate in the southwest of the study area.
There is a marked, although moderate, decrease in the maximum shear strain rate in the
northwestern part of the Western Foothills and the northern part of the Coastal Plain
and a moderate, roughly east-northeast striking southward increase at about 23.5° N.
The orientations of the dextral maximum shear planes (black in Fig. 9D) change from
nearly east-west striking in the northern part of the study area to more southwest
striking from c. 24° N southward. In the south, the orientations of the dextral maximum

shear planes change eastward from southwest striking to more west striking.

5 Discussion

The importance of reactivation of pre-existing faults in the deformation of an area is
thought to be such that this process can control the stress distribution in the crust
(Célérier 1995, 2008, Tavani et al. 2015). In the case of pre-existing faults, why
reactivation happens is a complex and selective process that depends on several factors,
the most important of which are; the orientation and steepness of the pre-existing faults
with respect to the principal stress axes, the friction along the fault plane, and the
geothermal gradient (Sibson 1985, 1990, 1994, Letouzey 1990, Kelly et al. 1999, Leclere
& Fabbri 2013). Fold-and-thrust belts commonly develop in areas where the basement
rocks have undergone a previous deformation history and the sediments that overlie
them can also have fault systems, facies changes, and possibly a weak contact with the

basement [e.g., Rodgers, 1990]. All of these form heterogeneities that can be
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(re)activated in the compressional stress field of a developing thrust system (Jackson
1980, Wiltschko & Eastman 1983, Sibson 1985, Richard & Krantz 1991, Célérier 1995,
2008, Turner & Williams 2004, Butler et al. 2006, Poblet & Lisle 2011, Bonini et al. 2012,
Lacombe & Bellahsen 2016). Below, we first compare and contrast our results with
previous stress and strain studies in the area and then go on to investigate whether or
not the reactivation of faults inherited from the Eurasian continental margin is a
contributing factor to the contemporary stress and strain fields of the south-central

Taiwan fold-and-thrust belt.

The result of the contemporary stress analysis of the south-central Taiwan fold-and-
thrust belt obtained in this study, which includes the data related to large earthquakes
such as Chi-Chi, is in good agreement with that obtained from both paleostress and
contemporaneous stress studies carried out in the same area (e.g. Angelier et al. 1986,
Suppe, 1995; Lacombe et al. 1999, Chang et al. 2003, Mouthereau & Lacombe 2006, Y.-
M. Wu et al. 2008, Y. J. Hsu et al. 2009, S. K. Chen et al. 2017). For example, our analyses
of the direction of the contemporary Sy (Fig. 10) shows that it undergoes an important
east-west change across the Chaochou fault (but not the Lishan fault) and a north-south
change that takes place at about 23.5° N, in agreement with that determined by Chang et
al. (2003), Mouthereau & Lacombe (2006), Y.-M. Wu et al. (2008; 2010), Y. J. Hsu et al.
(2009) and S. K. Chen et al. (2017). Likewise, there is coincidence in that there is a
change in the plunge of o1, from near vertical in the Central Range to subhorizontal in
the Western Foothills and the Hsuehshan Range. Our results also coincide with those of
S. K. Chen et al. (2017) in that the direction of Sy and the plunge of o1 display only

minor, if any, change with depth. However, Y.-M. Wu et al. (2010) indicate that there is a
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10° to 20° counterclockwise rotation with depth in southern Taiwan that we do not see
this in our results. Furthermore, paleostress studies carried out by Angelier et al.
(1986), Lacombe et al. (1999) and Chang et al. (2003) are also in general agreement
with our calculations of contemporaneous o1. All regional GPS studies indicate a change
in the horizontal displacement vector in the fold-and-thrust belt from roughly west-
northwest in the north to west and southwest in south. This change takes place at about
23.5° N. Our strain rate results are also in excellent agreement with previous studies
carried out in the study area using GPS data (e.g. Bos et al. 2003, Chang et al. 2003,
Ching et al. 2007, 2011, J. C. Hu et al. 2007, S. K. Chen et al. 2017). The close agreement
between all studies of the contemporaneous stress and strain fields in the fold-and-
thrust belt of south-central Taiwan indicate that the features they delineate are robust
on a regional scale and can therefore be used to address the hypothesis put forth in

Section 1.

The maximum horizontal stress (Su) of an area is typically oriented sub-parallel to the
relative plate motion (Zoback et al, 1989; Zoback 1992, Golke & Coblentz 1996;
Townend et al,, 2012), which, in the case of Taiwan, is roughly toward about 306° (Figs.
1 and 10) (Yu et al,, 1997, ]. Wu et al. 2016). Large intraplate forces, such as isostatic
compensation or lithosphere flexure can also have an important effect on the regional
stress field, while at a more local scale Sy can also be affected by features such as weak
faults, structural highs, recent sedimentation or topography (e.g. Tingay et al., 2005). In
the study area, there is a marked contrast in the direction of Sy from north to south (Fig.
10). In the north, the direction of Sy remains roughly sub-parallel to the relative plate

motion vector from the Central Range westward into the Coastal Plain. In the south,
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however, there is a nearly 45° counterclockwise rotation in the direction of Sy from the
Central Range westward across the Chaochou fault and into the Coastal Plain (Fig. 10)

(see also Chang et al. (2003), Y.-M. Wu et al. (2010), S. K. Chen et al. (2017)). The

direction of €y and the orientations of the dextral maximum shear planes both display

an overall rotation southward (Fig. 9).

The north-south change in the directions of the contemporaneous Sy, €n, the dextral

maximum shear planes, and the horizontal velocity vectors at about 23.5° N has been
interpreted to be related to the so-called Peikang High (Fig. 1) (J. C. Hu et al. 1997, Bos
et al. 2003, Chang et al. 2003, Mouthereau & Lacombe 2006, Ching et al. 2007, 2011, Y.-
M. Wu et al. 2008, 2010, Y. J. Hsu et al. 2009, S. K. Chen et al. 2017). Many of these
authors interpret the Peikang High to be a symmetrical structural high, or horst (see
Twiss & Moores (1992) for a definition of horst), in the extensional fault system
developed on the margin shelf that acts as a symmetrical indenter around which rocks
in the fold-and-thrust belt are moving. Nevertheless, as was pointed out by Mouthereau
& Lacombe (2006), neither the paleostress nor the contemporaneous o1 trajectories
around the Peikang High fit with those estimated by analogue (C.-W. Lin & Huang 1998)
and numerical models of it (e.g. ]. Hu & Angelier 1996, ]. C. Hu et al. 1997, C.-W. Lin &
Huang 1998). Nor do the contemporaneous stress trajectories, the horizontal
displacement field, or the strain field (Fig. 10) fit with those predicted to occur around

an indentor into a fold-and-thrust belt (e.g. Macedo & Marshak 1999, Marshak 2004).

Reflection seismic and wide-angle velocity profiling show that from about 23.5° N (the

southern flank of the Peikang High) (Figs. 1 and 2) the basement thins from c. 30 km on

Page 22 of 82



Page 23 of 82

oNOYTULT D WN =

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

Geophysical Journal International

the shelf area to less than 10 km in the area of the failed rift at the base of the slope (e.g.
Yeh et al. 2012, Lester et al. 2014, McIntosh et al. 2014, Brown et al. 2017). This is the
structural feature that we call the necking zone. Southward, is the morphological
feature that is the continental slope. It is across this highly structured area, with its east-
northeast strike for both the onset of the necking zone and the shelf/slope break (Figs. 1
and 2), its thinning basement and thickening sedimentary cover, and its extensional
fault system where the major changes in the stress, strain, and displacement fields of
the southern part of the Taiwan fold-and-thrust belt take place (Figs. 7, 9, and 10). We

therefore suggest, in agreement with Mouthereau & Lacombe (2006), that the

southward change in the Sy direction, in the strain rate derived directions of €4 and

dextral maximum shear planes, and in the horizontal displacement field vectors that
begin at about 23.5° N are not due to a symmetrical indentor, but rather to the

reactivation of faults related to the complex rifted margin geometry in this area.

The change across the Chaochou fault, but not the Lishan fault is more difficult to
interpret. It is possible that it reflects a local stress perturbation related to differences in
the topography from east to west (large difference across the Chaochou fault, but almost
no difference across the Lishan fault). It can also, in part, be the effect of differently
oriented pre-existing faults in the basement between southern Taiwan and the
Hsuehshan Range in the north. Nevertheless, there is close agreement between the
inferred extensional faulting stress regime and the strain rate derived extension in the

Central Range.
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6 Conclusions
In this study, we have shown that there are important changes, particularly in the
contemporaneous stress and GPS velocity fields, but also in the strain field, from the

continental shelf to the margins necking zone. In the north of the study area, and along

the entire western flank of the Central Range, the Sy and the €y directions are sub-

parallel to the direction of relative plate motion (306°) between the Philippine Sea and

the Eurasian plates. In the southwest, where the necking zone of the margin is entering

into the deformation of the fold-and-thrust belt, Sy, and both the directions of €4 and

dextral maximum shear planes undergo important rotations. In the case of Sy, these
rotations go up to 45°. Where the upper part of the necking zone is involved in the
deformation, the estimated most likely activated fault orientations determined from the
stress inversion is east-northeast, roughly parallel to known fault systems in the
basement. The fault type is dominantly dextral strike-slip and transpressive. In the far
southwest, an east-northeast striking zone of high shear strain rate coincides with the
onshore projection of a failed rift imaged by reflection seismic data offshore. A paucity
of seismicity in this area precludes an estimation of the principal stress axes
orientations and determination of fault type, but the calculated strain ellipse is in

keeping with it also being a zone of dextral strike-slip faulting (Fig. 10C).

These observations further corroborate our previous interpretations (Brown et al
2012, 2017, Camanni et al. 2014, 2016, Alvarez-Marron et al. 2014, Biete et al. 2018)
that there is a causal link between the reactivation of the inherited morphology and
structure of the Eurasian continental margin. In particular, the east-northeast striking

fault systems inherited from the necking zone of the continental margin are optimally
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oriented relative to Sy for reactivation (Sibson 1990, 1994, Kelly et al. 1999, Leclere &
Fabbri 2013). In the southwest of the study area, therefore, it appears that it is the
reactivation of these inherited structures that is controlling the contemporaneous stress
field (e.g., Célérier 2008, Tavani et al. 2015) since this stress field is calculated from

earthquakes that occur along them. Farther north, however, the close coincidence

between directions of Sy and €y with the relative plate motion vector suggest that it is

the plate boundary forces that control the stress and strain fields (e.g., Richardson 1992,

Zoback 1992, Golke & Coblentz 1996).

Finally, there are important north to south changes in both the stress and strain fields
from the western flank of the Central Range across the Chaochou-Lishan fault system
into the fold-and-thrust belt. The results of both the stress inversion and the GPS
derived strain rates show that the upper crust of western flank of the Central Range (we
do not investigate the east part in this study) is under extension while that of the fold-
and-thrust belt to the west is under compression. Few data exist in the Central Range
for depths greater than 15 km, but these appear to indicate that the deeper crust is

under compression (see also, S.K. Chen et al. 2017). Nevertheless, there is a clear

rotation of the directions of Sy and the directions of €y and dextral maximum shear

planes across the Chaochou fault in the south, but no noticeable change across the
Lishan fault in the north. A possible explanation for this difference may be that the
north-south differences in topography across this fault system are locally influencing

the stress and strain fields (e.g., Richardson 1992, Golke & Coblentz 1996).
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between the Eurasian margin and the Philippine Sea Plate is given. RS = Ryukyu
subduction zone, PSP = Philippine Sea Plate, ChT = Changhua thrust, LF = Lishan Fault,
SKF = Shuilikeng Fault, ChF = Chauchou Fault, BF = B fault, YF = Yichu fault, CF = Chiali
fault. The inset shows the tectono-stratigraphic units of the Taiwan orogen. CP = Coastal
Plain, WF = Western Foothills, HR = Hsuehshan Range, CR = Central Range, CoR =

Coastal Range.
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Figure 3: Map of the 5.2km/s proxy for the depth to the top of the basement extracted
from the 3D tomographic model of Kuo-Chen et al. (2012). The Tainan basement high
(TH) and the Kaoshiang basement low (KL) are highlighted. Labels of faults and tectono-

stratigraphic units are as in the inset of Figure 1.
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Figure 5: A) Distribution and faulting type for all focal mechanism used in this study.
The location of the study area is shown with a black dashed line. The faulting types
follow the classification scheme of Zoback (1992). B) The 0 to 7 km depth level with 13
clusters labelled A1 to A13. C) The 7 to 15 km depth level with 18 clusters labelled B1 to
B18. D) The 15 to 45 km depth level with 5 clusters labelled C1 to A5. Clusters

correspond to the results shown in Figure 6 and SD1.
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Figure 6: Results from the inversion of earthquake focal mechanisms for each cluster shown
in Figure 5. Column A is the best fitting Principal stress directions on lower hemisphere equal
area plots, with confidence regions of o; (red colors) and o3 (blue colors), and the optimal
solution (symbols). Histograms of Sy direction are shown on the periphery of the stereonet.
Column B shows the Kamb contours of the poles to the selected fault planes that best fit the
stress tensor. Column C shows rose diagrams of the strikes of the selected fault planes from
column B, highlighting the mean strike of the primary (solid) and secondary (dashed) fault
families in red. N = number of events, R = relative size of the intermediate principal stress,
Dev = Deviation and Mis = Misfit. The locations of the clusters are shown in Figure 4. A

complete output from the inversion is given in Figure SD1.
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Figure 7: Direction of the maximum horizontal compressive stress (Sy) for each cluster at
their respective depth level. Each wedge corresponds to the 95% confidence interval. The
result from each cluster is colored depending on fault type. A) The 0 to 7 km depth level, B)
The 7 to 15 km depth level, and C) The 15 to 45 km depth level. All the relevant data of the
resultant inversion for each cluster are in Figure 6 and the location of the clusters in Figure 5.

Labels of faults and tectono-stratigraphic units are as in the inset of Figure 1.
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Figure 8: Selected fault planes orientations with their interpreted kinematics depending on oy,
02, and o3 and Sy from the inversion results shown in figures 6B and C (primary
orientations/kinematics in red, secondary in black). A) The 0 to 7 km depth level, B) The 7 to 15
km depth level, and C) The 15 to 45 km depth level. All the relevant data of the resultant
inversion for each cluster are in Figure 6 and the location of the clusters in Figure 5. Labels of

main faults and tectono-stratigraphic units are as in the inset of Figure 1.
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53 979  Figure 9: Geodetic velocities and strain rates. A) GPS horizontal velocity vectors. B) Vertical
55 980 rotation strain rate. Blue colors represent counterclockwise and red colors clockwise rotation,

981  respectively. C) Dilatation strain rates. Blue colors representing compression and red

60 982  extension. The horizontal maximum compression (€u) and extension strain rate axes are
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shown by the blue and green lines, respectively. D) Maximum shear strain rates. Dextral and
sinistral shear planes (black and gray lines, respectively) are given. Labels of main faults,

tectono-stratigraphic units are shown in Figure 9b and are as in the inset of Figure 1.
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Figure 10: Summary of the stress and strain results for the study area set within the structural
and morphological features of the Eurasian continental margin. The relative plate motion
vector between the Philippine Sea Plate and Eurasia is shown. A) The most probable fault
planes and their kinematics calculated for the basement (the orientations of the secondary
planes are shown in Figure 8). An interpolated Sy trajectories are shown by dashed gray
lines. B) The most probable fault planes and their kinematics calculated in the fold-and-thrust
belt and sedimentary carapace (the orientations of the secondary planes are shown in Figure
8). Sy as in A. C) Maximum shear strain with deformation ellipses determined for groups of

four grid units. Dextral and sinistral maximum shear planes are shown in red and green. The

interpolated horizontal maximum compression strain rate (€u) trajectories are shown

by the dashed gray lines. The inset shows the expected fault orientations and kinematics in a
dextral strike-slip fault system. The maximum compressive strain field (Ey) directions from
Figure C are shown by dashed gray contour lines. Labels of faults and tectono-stratigraphic

units are as in the inset of Figure 1. The failed rift axis shown in Figure 1 is shown in thick
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black dashed line. S/S = shelf/slope break, TB = Tainan Basin, ThB = Tahishi Basin, NB =

Nanjihtao Basin and PkH = Peikang High.

Supplementary data sets:

Table SD1: Table of the 2456 earthquake focal mechanism data set used in this study with their
occurrence time (year, month, day, minute, and second), location (lat., long and depth), local
Magnitude (ML), Strike, dip and rake of the focal mechanisms solution, and the strike, dip and
rake standard deviation (str_sdv, dip_sdv, rake_sdv, respectively). Also provided is the number
of polarity readings (Npor), the azimuthal gap (Gap), the relative measure of up to down
polarity readings (Rup) and the Quality index (Qfp) following Y.-M. Wu et al,, (2008). The trend
and plunge of P-, T- and B axes is also provided. Finally, the cluster to which each event belongs
is also given. If the event is not used in any cluster it is indicated by a - sign. The locations of the

clusters are shown in Figure 5.

Table SD2: Table with clusters statistics values (median, average, one standard deviation) for
the focal mechanism solution quality index (Qfp) given by Y.-M. Wu et al. (2008). The number of
events in each cluster with Qfp below 0.2 (N_Qfp<0.2), and its percentage (%_Qfp<0.2) are also
shown. The number of nodal planes chosen with the instability criterion in each cluster
(InstaPlane), along with its percentage (%_InstaPlane), is also shown. The median, average and

standard deviation of each column is given at the bottom of the table.
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Figure SD1: Focal mechanism cluster information and results from the inversion for each depth
level cluster of Figure 4. For each cluster there are seven plots which in order from left to right
show (all steronets are equal area lower hemisphere plots): three plots with the focal
mechanism information, Column A) stereonets with P- and T-axes. Column B) stereonet with
poles to the nodal planes. Column C) Triangular distribution plot depending on the faulting type
after Kagan [2005]. And four plots with the results of the inversion. Column D) Best fitting stress
tensor, with o4, 02, and o3 directions (symbols: square, diamond, triangle, respectively) and the
10%, 68% and 95% confidence limits of oy and o3z colored, in warm and cold colors

respectively. At the edge of the plot is the Sy direction with its confidence limit as a histogram.
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Column E) stereonets showing the Kamb contours of the poles to the selected fault planes that
best fit the stress tensor. Column F) Rose diagram with the strikes of the selected fault planes
from Column D), highlighting the mean strike of the primary and secondary fault families in red
solid and dashed lines, respectively. Column G) Mohr-Coulomb diagrams with all nodal planes in
the clusters, showing with red circles the selected nodal planes and with blue crosses the nodal
planes that were not selected. A coefficient of friction of 0.6 was used to construct the Mohr-
Coulomb diagrams. Parameters of the inversion results: N = number of events, R = relative size
of the intermediate principal stress, Dev = Deviation and Mis = Misfit. The locations of the

clusters are shown in Figure 5.
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